| Progressive Code A.N. | Product | Date |
| :--- | :--- | :--- |
| AN_07 | Floor support columns with deflection mirrors | $10 / 02 / 2015$ |
| Application | Permeter protection of areas with access point on multiple sisdes |  |
| Description | Combined application of safety light curtains and deflector mirrors |  |

## Request

For perimeter protections up to 4 sides, floor support columns with deflection mirrors can be used in combination with safety light curtains. An example of application is illustrated in the following figure.

Safety light curtain Emitter


Safety light curtain receiver

Floor support columns with deflection mirrors $\longrightarrow$

Machine for laser cutting perimeter protection
Columns with deflection mirrors range offer from ReeR is the following:

| Models | FMC-S2 | FMC-SB2 | FMC-S3 | FMC-SB3 | FMC-S4 | FMC-SB4 | $\begin{aligned} & \text { FMC- } \\ & \text { S1700 } \end{aligned}$ | FMC- <br> S2000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ordering codes | 1200620 | 1200645 | 1200621 | 1200646 | 1200622 | 1200647 | 1200625 | 1200623 |
| Description | single mirror for 2 beams light curtains | 2 mirrors for 2 beams light curtains | single mirror for 3 beams light curtains | 3 mirrors for 3 beams light curtains | single mirror for 4 beams light curtains | four mirrors for 4 beams light curtains | controlled height up to 1360 mm | controlled height up to 1660 mm |
| Overall height with base (mm) | 1055 |  | 1255 |  | 1385 |  | 1725 | 2025 |

The SP deflection mirrors make it possible to create perimeter protection of areas with access point on multiple sides with large distances between the protection elements.

Normally the light curtains used in this type of applications are those with 2, 3 and 4 beams for detecting the presence of the body in a hazardous area. However, You can also use light curtains with different resolutions. In this case, do not apply the measures listed in the table of the next page. For these applications it is necessary to assess the safety distances depending on the type of plant.

The layout of safety light curtains and columns with the deflection mirrors clearly depend on the type and the specific requirements of the protection system we intend to create.

There are three factors to take into account in calculating the distances between safety barriers and columns:

- Divergence between the beams - Should be taken into account that the beams emitted from the light curtain emitter present a certain degree of divergence, so there are never perfectly parallel.
- Any problems of flatness of the mirror - This factor, as the previous increases its influence with increasing distances.
- Absorption coefficient of mirrors - For each mirror used is necessary to take into account the reduction in power of the optical beam emitted from the light curtain emitter. Refer to the following diagram:
- FMC (S2-S3-S4) - 15\% for light curtains with range up to 20 m
- 20\% for light curtains with range higher than 20 m .
- FMC (SB2 - SB3 - SB4) - 10\% for light curtains with range up to 20 m
- $15 \%$ or light curtains with range higher than 20 m .

This reduction is due to the specific characteristics of the mirror and takes account of the dirt and dust that settles on the same, especially in industrial environments. This reduces the range of the system mirror/light curtains.

These three factors determine the choice of the barrier model and the minimum distances for the positioning of the elements of the protection system.
The following table is intended to provide a guide for:

- choice of the type of column and light curtain to be used;
- define the maximum distance allowed for the correct placement of the devices taking into account the factors mentioned above and the maximum range of the light curtain used.

|  |  |  | INSTALLATION TYPE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| COLUM WITH DEFLECTION MIRROR TYPE | LIGHT CURTAINS MODEL | LIGHT CURTAINS RANGE |  |  |  |
|  |  |  | Max. Distance | Max. Distance | Max. Distance |
| FMC S2 FMC S3 FMC S4 | EOS | 4-12m | $(\mathrm{d} 1+\mathrm{d} 2)<10 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<8,5 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<6,5 \mathrm{~m}$ |
|  | EOS H | 10-20 m | $(\mathrm{d} 1+\mathrm{d} 2)<17 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<14,5 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<12 \mathrm{~m}$ |
|  | ADMIRAL | 6-18 m | $(\mathrm{d} 1+\mathrm{d} 2)<15 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<13 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<11 \mathrm{~m}$ |
|  | VISION | 6-16m | $(\mathrm{d} 1+\mathrm{d} 2)<13,5 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<11,5 \mathrm{~m}$ | $(d 1+d 2+d 3+d 4)<9,5 \mathrm{~m}$ |
|  | JANUS LR | 30-60m | $(\mathrm{d} 1+\mathrm{d} 2)<48 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<38 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<30 \mathrm{~m}$ |
|  | ADMIRAL LR | 22-60m |  |  |  |
|  | VISION LR | 22-60m |  |  |  |
|  | JANUS LR ILP | 40-80 m | $(\mathrm{d} 1+\mathrm{d} 2)<64 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<51 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<41 \mathrm{~m}$ |
| FMC SB2 <br> FMC SB3 <br> FMC SB4 | EOS | 4-12 m | $(\mathrm{d} 1+\mathrm{d} 2)<11 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<10 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<9 \mathrm{~m}$ |
|  | EOS H | 10-20 m | $(\mathrm{d} 1+\mathrm{d} 2)<18 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<16 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<14,5 \mathrm{~m}$ |
|  | ADMIRAL | 6-18 m | $(\mathrm{d} 1+\mathrm{d} 2)<16 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<14,5 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<13 \mathrm{~m}$ |
|  | VISION | 6-16m | $(\mathrm{d} 1+\mathrm{d} 2)<14,5 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<13 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<11,5 \mathrm{~m}$ |
|  | JANUS LR | 30-60m | $(\mathrm{d} 1+\mathrm{d} 2)<51 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<43 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<36,5 \mathrm{~m}$ |
|  | ADMIRAL LR | 22-60m |  |  |  |
|  | VISION LR | 22-60m |  |  |  |
|  | JANUS LR ILP | 40-80 m | $(\mathrm{d} 1+\mathrm{d} 2)<68 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3)<58 \mathrm{~m}$ | $(\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3+\mathrm{d} 4)<49 \mathrm{~m}$ |

Note: For small distances the column with single mirror is enough; for longer distances, which amplify all the factors mentioned above, are required multiple mirrors that let you retrieve the divergence of beams parallelism.

