

Catalog - Safety relays 2014 / 2015

Applications			Typ	Approvals	Housing (mm)	Category	Page	
	Emergency stop and safety gate monitoring relays		SAFE 4 / 4.1	CE, TÜV, UL, C-UL	22.5	4	6	
			SAFE 4 eco / 4.1 eco	CE, TÜV, UL, C-UL	22.5	4	6	
			SAFE 4.2 eco / 4.3 eco	CE, TÜV, UL, C-UL	22.5	4	7	
			SAFE 5/5.1	CE, TÜV, UL, C-UL	22.5	$2 / 3$	8	
			SAFE C 1	CE, TÜV, UL, C-UL	22.5	4	8	
			SAFE FLEX	CE, TÜV, UL*, C-UL*	22.5	4	19	
			SAFE 1 / 1.1	CE, TÜV, UL, C-UL	22.5	$2 / 3$	9	
			SAFE 2 / 2.1	CE, TÜV, UL, C-UL	22.5	4	9	
			SAFE S. 6	CE, TÜV, UL, C-UL	45	4	10	
			RS-NAGMP / MP. 1	CE, TÜV, UL*, C-UL*	100	$3 / 4$	10	
			RS-NAGV	CE, TÜV, UL, C-UL	100	4	11	
+ time-delay function		-	SAFE T..	CE, TÜV, UL, C-UL	35	4	11	
		SAFE T ON	CE, TÜV, UL, C-UL	35	4	12		
		SAFE FLEX T	CE, TÜV*, UL*, C-UL*	45	4	12		
	+ mat-, edges-control relays **		${ }^{(12)}$	RS-NAGAO	CE, TÜV, UL, C-UL	45	4	13
$\stackrel{(1(n))}{L^{(n)}}$	Mat-, edges-control relays **			SAFE CM	CE, TÜV, UL, C-UL	22.5	4	13
			SAFE M / M. 1	CE, TÜV, UL, C-UL	22.5	3	14	
			SAFE 2.2	CE, TÜV, UL, C-UL	22.5	4	14	
	Control devices for safety ligth barriers		SAFE L. 2	CE, TÜV, UL, C-UL	22.5	4	15	
			SAFE CL	CE, TÜV, UL, C-UL	22.5	4	15	
			SAFE FLEX	CE, TÜV, UL*, C-UL*	22.5	4	19	
	+ time-delay function	-	SAFE FLEX T	CE, TÜV*, UL*, C-UL*	45	4	12	
\approx	Two hand control relays		SAFE Z. 2	CE, TÜV, UL, C-UL	22.5	4	16	
			SAFE CZ	CE, TÜV, UL, C-UL	22.5	4	16	
			SAFE FLEX	CE, TÜV, UL*, C-UL*	22.5	4	19	
			SAFE Z	CE, TÜV, UL, C-UL	22.5	4	17	
	+ time-delay function	-	SAFE FLEX T	CE, TÜV*, UL*, C-UL*	45	4	12	
$+{ }^{++}$	Expansion modules		SAFE X4 / X4.1	CE, TÜV, UL, C-UL	22.5	4	17	
			SAFE IRZ. 2	CE	22.5	(4)	18	
			RS-NAGX 5	CE, TÜV, UL*, C-UL*	22.5	4	18	
	Multifunctional		SAFE FLEX	CE, TÜV, UL*, C-UL*	22.5	4	19	
	+ time-delay function	-	SAFE FLEX T	CE, TÜV*, UL*, C-UL*	45	4	12	
$\sum_{n=0}$	A Standstill Monitor		SAFE SM	CE, TÜV*, UL*, C-UL*	22.5	4	20	
	Muting		RS-NAGU. 1	CE, TÜV, UL, C-UL	90	4	19	
			RS-NAGU. 2 f	CE, TÜV, UL, C-UL	90	4	19	

Three housing lines: The big diversity at market

Please contact us
www.automation-safety.com • Tel.: +49 (0) 366287250 info-lawo@automation-sicherheit.de

* Approvals pending
** Short-circuit-based mats
© ${ }^{(A)}$ Suitable up to risk category max. 4

First safety relay in the world which is developed after ErP-Guidelines: The SAFE 4 eco Series

About riese electronic:

riese electronic gmbh has been founded in 1958. There are working more than 100 employees
in Horb a.N. (Baden-Württemberg - head office) and Langenwolschendorf (Thuringia - branch).
The divisions consist of the development, production and the Sale of the following product lines:

- safety relays (since 1990)
- time-, control- and measuring relays
- customized development and production of electronic devices and complete products which carry the label/logo of the customer.

Company history:

- 1958: foundation of riese electronic, division of electronic manufacturing services (EMS)
- 1961: formation of the first freely programmable punching machine of the world
- 1964: controller for the first electronic ticket machine of the world
- 1979: award from the manager magazine and the Deutsche Bank:
"the best innovative middle class company in the year 1979"
- 1984: former beginning in the SMT Production technology
- 1987: former beginning of the mass production and of relays
- 1990: First safety relays
- 1991: dedication of the subsidiary plant in Zeulenroda-Triebes (Thuringia)
- 1998: development and at least production of the worldwide smallest safety relays (SAFE 1, SAFE 2, etc.)
- 2000: smallest two hand control relay in the world (SAFE Z)
- 2001: realisation and transformation of the largest outsourcing project with more than 300 devices and 3500 components and assemblies
- 2003: expansion of production, administration and training classroom
- 2005: expansion of the sales department and warehouse
- 2006: adjustment of the business in two divisions:

1. EMS (Electronic Manufacturing Service) and
2. Automation \& Safety
(Components for automation and safety technology)

- 2008: New building in Langenwolschendorf / Thuringa
- 2010: BEUS: First ultrasonic concrete freezing time measuring device 3. place EEEfCOM innovation award
- 2011: 1. place BACO "Best PERFORMANCE Award" 2. place „BEST EMS Award"
- 2012: SAFE 4 ECO: First safety relay in the world which is developed according to ErP-Guidelines
- 2013: BEUS laboratory version available

Since 1995 the quality management system of riese electronic gmbh has been certificated according to ISO 9001. Thus a continuous quality of the products and the services is guaranteed. riese electronic gmbh is one of the pioneers at the safety relay market!

riese - safety relays

With a wide product range (currently approx. 40 products) you are on the "safe side" with the newest safety technology from the descendants of "Adam Riese". Detailed technical datas as well as application examples with detailing of safety categories for safety control devices and muting controller can be found in our application guide. This application guide contains approx. 139 pages with more than 181 different application examples, descriptions and explanations of the most important standards in the safety engineering.

Please ask for our application guide on CD-ROM:
Phone: 0049 / (0)74515501-18 // Fax: 0049 / (0)7451 5501-70
or write us an e-mail to relay@riese-electronic.de.
All operating instructions will be found under www.automation-safety.com

Further leaflets for riese electronic

Your personal brandlabel relay

Do You would like to have your own label on the safety relay you are using?
Do You have certain housing forms which you would like to apply?
We can offer to you is a longterm experience due to our customized division.
Thus we are able to meet your needs flexibly at any time.
Whether there should be "only" your logo on the relay or also a special colour is demanded we will together work out a complete Brandlabel project plan on which end there is your specific safety relay - fast and with competence.
would you like a special colour?
cage clamps, screw clamps, detachable or fixed?
choose your individual housing ...

Your relay design department

Our large relay design team of hard- and software engineers realize your wishes for new relays.
Please ask us for your requirements.

Customized housings:

Housing IP 67 applicable to Your relay - please ask for it!

PRODUCT - NAVIGATOR

Emergency stop / safety gate monitoring relays

SAFE 4 SAFE 4.1	3	1					\times		x	\times	22,5	x	5A	CE, TÜV UL, C-UL		\checkmark				6								
SAFE 4 eco SAFE 4.1 eco	3	1					x		x	\times	22,5	x	5A	CE, TÜV, UL, C-UL	\checkmark	6												
SAFE 4.2 eco	3	1					\times		x	\times	22,5	wählbar	5A	CE, TÜV, UL, C-UL	\checkmark	7												
SAFE 4.3 eco	3	1					\times		x	\times	22,5	wählbar	5A	CE, TÜV, UL, C-UL	\checkmark	7												
SAFE 5 SAFE 5.1	2						x				22,5	x	6A	CE, TÜV UL, C-UL		\checkmark	\checkmark	$\sqrt{* 3}$		\checkmark	\checkmark	\checkmark	$\checkmark * 3$	\checkmark				8
SAFE C1			4		\times						22,5	wählbar	1,8A	CE, TÜV UL, C-UL		\checkmark	8											
SAFE FLEX	2				x						22,5	wählbar	6A	$\begin{gathered} \text { CE, TÜV, } \\ \text { UL*, C-UL* } \end{gathered}$		\checkmark	19											
SAFE 1 SAFE 1.1	3	1					x				22,5	x	5A	CE, TÜV UL, C-UL		\checkmark	\checkmark	$\sqrt{* 3}$		\checkmark	\checkmark	\checkmark	$\downarrow^{* 3}$					9
SAFE 2 SAFE 2.1	2						x				22,5	\times	6A	CE, TÜV UL, C-UL		\checkmark				9								
SAFE S. 6	2				\times	x	\times	x	\times	\times	45		6A	CE, TÜV UL, C-UL		\checkmark				10								
RS-NAGMP RS-NAGMP. 1	3	1		x	x	x	x		x	x	100		8A	CE, TÜV UL*, C-UL*		\checkmark				10								
RS-NAGV	6	4			x	x	x		x	\times	100		4A	CE, TÜV UL, C-UL		\checkmark				11								

Emergency stop / safety gate monitoring relays with time-delay

| SAFE T... | 2+2 | 1 | | | x | 35 | wählbar | 6A | CE, TÜV
 UL, C-UL | \checkmark | 11 |
| :---: |
| SAFE T ON | 2+2 | 1 | | | x | 35 | wählbar | 6A | CE, TÜV
 UL, C-UL | \checkmark | 12 |
| SAFE FLEX T | 4+2 | 1 | 1 | x | | 45 | wählbar | 6A | $\begin{aligned} & \text { CE, TÜV*, } \\ & \text { UL}^{*}, \mathrm{C}-\mathrm{UL}^{*} \end{aligned}$ | \checkmark | 12 |

Emergency stop / safety gate monitoring relays for function: mat-, edges-control relays

Mat-, edges-control relays

Emergency stop for safety light barriers

SAFE L. 2	3				\times			22,5	wälloar	6A	CE, TOUV			${ }^{*} 4$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	v				15
SAFE CL			4	\times				22,5	wähloar	1,8A	CE, TÜV		\checkmark	15											
SAFE FLEX	2			\times				22,5	wähloar	6A	$\begin{gathered} \hline \mathrm{CE}, \mathrm{TUUV}, \\ \mathrm{UL}^{*}, \mathrm{C}-\mathrm{UL}^{*} \end{gathered}$		\checkmark	19											
SAFE FLEX T	4+2	1	1	x				45	wählbar	6 A	$\begin{aligned} & \text { CE, TÜV*, } \\ & \text { UL*}^{*}, \mathrm{ULL}^{*} \end{aligned}$		\checkmark	12											

[^0]www.automation-safety.com/englisch/sichrel rohs.htm
All operating instructions can be found under www.automation-safety.com
Clearances for products will be found in the table. A Description of the norms will be found on page 21.

PRODUCT - NAVIGATOR

Two hand control relays

Multifunctional

A Standstill Monitor																		
SAFE SM	2	x	22,5	6A	CE, TÜV*,	\checkmark	20											

Muting

* Approvals pending
*2 Undelayed terminals only
*3 According up to safety category 3 with two-phase off-switching of power supply and protected wiring
*4 Useable only with safety light barriers with integrated selftest
A Suitable up to risk category max. 4

Emergency stop and safety gate monitoring relays

SAFE 4 / SAFE 4.1

Emergency stop
and safety gate monitoring relay
CE, TÜV, UL, C-UL
3 normally open safety, 1 normally auxiliary closed
LED indicators for status and supply diagnostic
Opposite polarity between channels
With (SAFE 4) and without (SAFE 4.1) start control
Power, channel 1 and channel 2
24 V AC / DC (electronic fuse)
110,230 V AC (with galvanic disconnection / transformer)

24 V AC: ca. 5 VA, 24 V DC: 3 W, $110 / 230$ V AC: 3,7 VA
$<50 \mathrm{~ms} /<30 \mathrm{~ms}(24 \mathrm{~V} \mathrm{AC}<50 \mathrm{~ms})$ ready after time delay $<0,5 \mathrm{~s}$
5 A, 240 V AC, 24 V AC / DC, AC15 230 V / 5 A, DC13 24 V / 5 A
6 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1200 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied to terminals A1 and A2. The power LED illuminates and 24 V DC is available at terminal S11. Terminals S12 and S22 must be connected according to the application example selected to meet the application requirements. To start the unit terminals S33 and S34 must be bridged with a normally open contact. The unit works if you close this contact. At this time the contacts 13-14, 23-24 and 33-34 are closed. The LEDs channel 1 and channel 2 illuminate. In series to this start button an external contactor can be controlled.

For version with detachable clamps (screw - or cage clamps) ... please ask our sales team!

SAFE 4 eco / SAFE 4.1 eco

Emergency stopp and safety gate monitoring relay pin and function compatible to Safe 4/4.1
CE, TÜV, UL, C-UL
3 normally open safety, 1 normally auxiliary closed LED indicators for status and supply diagnostic Opposite polarity between channels
With (SAFE 4 eco) and without (SAFE 4.1 eco) start control
Power, channel 1 and channel 2
24 V AC / DC (electronic fuse)
115, 230 V AC (with galvanic disconnection / transformer)
24 V DC: 1,5 W / AC: 3,6 VA
200 ms / $<10 \mathrm{~ms}$ ready after time delay $<0,5 \mathrm{~s}$
5 A, 240 V AC, 24 V AC / DC
10 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1200 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied at terminals A1 and A2. The power LED lights. Terminals S11, S12, S21 and S22 have to be wired up as shown in the application examples. To start the unit, follow the examples described in the start applications section. In series to the start-button an external contactor can be controlled (see application example). After activation the contacts 13-14, 23-24 and 33-34 are closed, contact 41-42 is opened. The LEDs channel 1 and channel 2 are lit.

For version with detachable clamps (screw - or cage clamps) ... please ask our sales team!

Dual channel safety gate monitoring with cross circuit monitoring and monitored start button

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 154 years / high, DC: 99% / high, CCF: achieved

EN ISO 13849-1 / DIN EN 61508 / DIN EN 62061: PLe, Cat. 4 / SIL3
MTTFd: 910 years / high, DC: 99% / high, CCF: achieved,
PFH: $2,32^{* 1} 10^{-9} 1 / \mathrm{h}$, SFF: > 99\%, HFT: 1

SAFE 4.2 eco

Emergency stop
and safety gate monitoring relay
CE, TÜV, UL, C-UL
3 normally open safety, 1 normally auxiliary closed
LED indicators for status and supply diagnostic
Opposite polarity between channels
With and without start control (selectable)
Power, channel 1 and channel 2
$24 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC} \mathrm{(electronic} \mathrm{fuse)}$
115, 230 V AC (with galvanic disconnection / transformer)
24 V DC: 1,5 W / AC: 3,6 VA
200 ms / $<10 \mathrm{~ms}$ ready after time delay $<0,5 \mathrm{~s}$
5 A, 240 V AC, 24 V AC / DC
10 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1200 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied at terminals A1 and A2. The power LED lights. Terminals S11, S12, S21 and S22 have to be wired up as shown in the application examples. To start the unit, follow the examples described in the start applications section. In series to the start-button an external contactor can be controlled (see application example). After activation the contacts 13-14, 23-24 and 33-34 are closed, contact 41-42 is opened. The LEDs channel 1 and channel 2 are lit.

For version with detachable clamps (screw - or cage clamps) ... please ask our sales team!

SAFE 4.3 eco

Safety gate monitoring relay, Safety magnetic switch monitoring, Suitable for release button with reed contact outputs CE, TÜV, UL, C-UL
3 normally open safety, 1 normally auxiliary closed
LED indicators for status and supply diagnostic
Opposite polarity between channels
With and without start control (selectable)
Power, channel 1 and channel 2
24 V AC / DC (electronic fuse)
115,230 V AC (with galvanic disconnection / transformer)
24 V DC: 1,5 W / AC: 3,6 VA
200 ms / $<10 \mathrm{~ms}$ ready after time delay $<0,5 \mathrm{~s}$
5 A, 240 V AC, 24 V AC / DC
10 mA

$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

1200 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied at terminals A1 and A2. The power LED lights. Terminals S11, S12, S21 and S22 have to be wired up as shown in the application examples. To start the unit, follow the examples described in the start applications section. In series to the start-button an external contactor can be controlled (see application example). After activation the contacts $13-14,23-24$ and $33-34$ are closed, contact 41-42 is opened. The LEDs channel 1 and channel 2 are lit.

For version with detachable clamps (screw - or cage clamps) ...
please ask our sales team!

Dual channel e-stop monitoring with cross circuit monitoring and monitored start button.

Safety gate with monitored start button and antivalent switching safety gate contacts.

EN ISO 13849-1 / DIN EN 61508 / DIN EN 62061: PLe, Cat. 4 / SIL3
MTTFd: 910 years / high, DC: 99% / high, CCF: achieved,
PFH: $2,32^{\star 1} 10^{-9} 1 / \mathrm{h}$, SFF: > 99%, HFT: 1

EN ISO 13849-1 / DIN EN 61508 / DIN EN 62061: PLe, Cat. 4 / SIL3
MTTFd: 910 years / high, DC: 99% / high, CCF: achieved,
PFH: $2,32^{* 1} 10^{-9} \frac{1}{\mathrm{~h}}$, SFF: > 99%, HFT: 1
\& safety

Emergency stop and safety gate monitoring relays

SAFE 5 / SAFE 5.1

Emergency stop
and safety gate monitoring relay
CE, TÜV, UL, C-UL
2 normally open safety
LED indicators for status and supply diagnostic
With (SAFE 5) and without (SAFE 5.1) start control
Power, channel 1 and channel 2
24 V AC / DC (electronic fuse)
ca. 1,6 VA / 1,6 W
$<50 \mathrm{~ms} /<80 \mathrm{~ms}$ (AC), $<50 \mathrm{~ms}$ (DC)
6 A, 250 V AC, 24 V DC
6 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied via emergency stop to terminals A1 and A2.
Power LED illuminates if the emergency stop is closed. To start the unit terminals Y2 and Y1 must be bridged with a normally open contact. The unit works if you close this contact. At this time the contacts 13-14, 23-24 are closed. The LEDs channel 1 and channel 2 illuminate. In series to this start button an external contactor can be controlled.

For version with detachable clamps (screw - or cage clamps) ... please ask our sales team!

EN ISO 13849-1: PLe, Cat. 3 (***see product-navigator page 4) MTTFd: 71 years / high, DC: 90% / medium,
CCF: achieved

SAFE C1

Safety controller for e-stop
and gate monitoring applications
CE, TÜV, UL, C-UL
4 safety semiconductor outputs (OSSD)
LED indicators for status and supply diagnostic
Wearless semiconductor outputs , "AND", "OR" functions possible
between several SAFE C1 Automatic start possible
Power, channel 1 and channel $2+$ flashing code
24 V DC (+ 25-20 \%)
Overvoltage protection
ca. 3 W
$<70 \mathrm{~ms}$ / $<30 \mathrm{~ms}$
total current 1,8 A
infinite
no (special variants possible)
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
up to 43 W
short circuit proof
2-channel e-stop application with monitoring of reset circuit, opposite channels polarity and contact expansion.
The release button must be attached to the e-stop circuits (S11 / S12, S21 / S22) and the start button must be attached to the reset-circuit (S34 / A1). The activation of the semiconductor safety outputs takes place after closing of the reset circuit (pressing the start button).
By linkage more SAFE C1 with one another safety applications also complicated, with which different components are to be differently supervised, can be realized. For monitoring of the external contactor, the NC contacts of the force guided contactors must be attached in series to the reset circuit.
$\mathrm{A} 1+24 \mathrm{VDC}$
$\mathrm{A} 2 \quad \mathrm{~V}$ DC

EN ISO 13849-1/ EN 61508: PLe, Cat. 4/ SIL3
MTTFd: 163 years / high, DC: high, CCF: achieved, PFH: $2,87 * 10^{-9} 1 / \mathrm{h}$, PFD: $2,01 * 10^{-6} 1 / \mathrm{h}$, SFF: 0,9573

SAFE 1 / SAFE 1.1

Emergency stop
and safety gate monitoring relay
CE, TÜV, UL, C-UL
3 normally open safety, 1 normally auxiliary closed
LED indicators for status and supply diagnostic
With (SAFE 1.1) and without (SAFE 1) start control
Power, channel 1 and channel 2
24 V AC / DC (electronic fuse)
ca. 2,5 VA / 2,5 W
$<50 \mathrm{~ms} /<100 \mathrm{~ms}$
5 A, 250 V AC, 24 V DC
1 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1250 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied via emergency stop button to terminals A1 and A2. Power LED illuminates if the emergency stop is closed. To start the unit terminals Y2 and Y1 must be bridged with a normally open contact. The unit works if you close this contact. At this time the contacts 13-14, 23-24 and 33-34 are closed, contact 41-42 is opened. The LEDs channel 1 and channel 2 illuminate. In series to this start button an external contactor can be monitored.

SAFE 2 / SAFE 2.1

Emergency stop
and safety gate monitoring relay
CE, TÜV, UL, C-UL
2 normally open safety
LED indicators for status and supply diagnostic With (SAFE 2) and without (SAFE 2.1) start control

Power, channel 1 and channel 2
24 V AC / DC (electronic fuse)
ca. 2,5 VA / 2,5 W
$<50 \mathrm{~ms} /<30 \mathrm{~ms}$
6 A, 250 V AC, 24 V DC
6 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied to terminals A1 and A2. Power LED illuminates and 24 V DC is available at terminal S11. Terminals S12 and S22 must be connected according to the application example selected to meet the application requirements. To start the unit terminals S 33 and S 34 must be bridged with a normally open contact. The unit works if you close this contact. At this time the contacts 13-14 and 23-24 are closed. The LEDs channel 1 and channel 2 illuminate. In series to this start button an external contactor can be controlled.

EN ISO 13849-1: PLd, Cat. 3 (***see product-navigator page 4) MTTFd: 37,57 years / high, DC: 90% / medium,
CCF: achieved

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 69 years / high, DC: 99\% / high,
CCF: achieved

Emergency stop and safety gate monitoring relays

SAFE S. 6

Emergency stop
and safety gate monitoring relay
CE, TÜV, UL, C-UL
2 normally open safety
LED indicators for status and supply diagnostic
Selectable opposite polarity between channels
Power, channel 1 and channel 2
24 V AC / DC (without galvanic disconnection, but with a fuse F1)
24 V DC (without galvanic disconnection, but with an electronic fuse)
24, 48, 110-127, 230 V AC (with galvanic disconnection / transformer)
ca. 3 VA
$<150 \mathrm{~ms} /<30 \mathrm{~ms}$
6 A, 250 V AC, 24 V DC
$100 \mathrm{~mA}{ }^{(*)}$
Simultaneous protective door contacts: ca. 65 ms
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1380 VA (resistive load)
6 A quick acting or 4 A time lag
A supply voltage must be applied at terminals A1 and A2 in order to operate the device. If this is done there is a voltage of 24 V DC at terminal T11. Terminals T12 and T22 must be wired as shown in the application examples. To start the unit terminal T11 must be bridged with terminal T34 by means of a closing contact or terminal T34 must receive a 24 V DC impulse (short time bridging of the connection terminals T11-T34). If this is down contacts 13-14 and 23-24 close. The LEDs channel 1 and channel 2 illuminate. In series with the start button and terminals T 11 / T34 the function of an external contactor can be monitored.
(*) We offer all devices which have a contact capacity of min. 100 mA at 24 V DC with hard gold-plated contacts. In this way you get a contact capacity of 4 mA .

RS-NAGMP / RS-NAGMP. 1

Emergency stop
and safety gate monitoring relay
CE, TÜV, (UL, C-UL pending)
3 normally open safety, 1 normally auxiliary closed
LED indicators for status and supply diagnostic
With (NAGMP.1) and without (NAGMP) choosable opposite polarity between channels
Power, Channel 1 and channel 2
$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ (without galvanic disconnection, but with a safety resistor)
24 V DC / 12 V DC (without galvanic disconnection, but with an electr. fuse)
24, 110-127, 230 V AC (with galvanic disconnection / transformer)
ca. 3,5 VA / 24 V DC: 1,8 W / 12 V DC: 1,4 W
$<300 \mathrm{~ms} /<20 \mathrm{~ms}$
8 A, 250 V AC, 250 V DC, normally closed: 24 V AC / DC
10 mA
Simultaneous protective door contacts: ca. 75 ms
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
2000 VA (resistive load), 200 W
6 A quick acting or 4 A time lag
A supply voltage must be applied at the terminals A1 and A2 in order to operate the device. If this is done there is a voltage of 24 V DC at the terminal T11. Terminals T12, T21, T22 and T23 have to be wired as it is shown in the application examples. To start the unit terminal T33 has to bridged with terminal T34 or terminal T34 has to get a 24 V DC impulse (short time bridging of the connection terminals T33-T34). If this is done the safety-contacts 13-14, 23-24 and 33-34 are closed and 41-42 are open. The LEDs channel 1 and channel 2 illuminate. Through terminals X1 and X2 the function of an external contactor can be monitored. Terminals X1 and X2 have to be bridged in order to operate the device.

$\frac{\text { * Klemme T21 nur bei RS-NAGMP. } 1}{\text { * terminal T21 only by RS-NAGMP. } 1}$

EN ISO 13849-1: PLd / e, Cat. 3 / 4
MTTFd: 74,15 years / high, DC: Cat. 3: 90\% / medium, Cat. 4: 99\% / high, CCF: achieved

EN ISO 13849-1: RS-NAGMP: PLd, Cat. 3 / RS-NAGMP.1: PLe, Cat. 4 MTTFd: 73,61 years / high, DC: Cat. 3: 90\% / medium, Cat. 4: 99\% / high CCF: achieved

+ with time-delay function

RS-NAGV

Emergency stop
and safety gate monitoring relay
CE, TÜV, UL, C-UL
6 normally open safety, 4 normally auxiliary closed
Opposite polarity between channels
Cyclial monitoring of the function
LED indicators for status and supply diagnostic
Channel 1 and channel 2
24 V AC / DC (without galvanic disconnection / safety resistor)
24 VDC (without galvanic disconnection / electronic fuse),
24, 110-127, 230 V AC (with galvanic disconnection / transformer)
ca. 6 VA
$<200 \mathrm{~ms} / \mathrm{ca} .30 \mathrm{~ms}$
4 A, 240 V AC, 60 V DC
10 mA
Simultaneous protective door contacts: ca. 75 ms
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1000 VA (resistive load), 120 W
4 A quick acting
A supply voltage must be applied at terminals A1 and A2 in order to operate the device. If this is done there is a voltage of 24 VDC at terminals T11, T12 and T22 must be wired as shown in the application examples. To start the unit terminal T11 must be bridged with terminal T34 by means of a closing contact or terminal T34 must receive a 24 V DC impulse (short time bridging of the connection terminals T11-T34). If this is done contacts $13-14,23-24,33-34,43-44,53-54$ and $63-64$ close and 71-72, 81-82, 91-92 and 101-102 open. The LEDs channel 1 and channel 2 illuminate. Through terminal X1 and X2 the function of an external contactor can be monitored. Terminals X1 and X2 must be bridged in order to operate the device.

SAFE T...

Emergency stop and safety gate monitoring relay with immediate and delayed outputs
CE, TÜV, UL, C-UL
2 NO, 2 NO start up delayed, 1 NC
cross circuit protection or single-channel
Time delay $0,05 \mathrm{~s}-600 \mathrm{~s}$ in 64 steps,
automatic or manually start with start button
Power, channel 1, cannel 2, channel 1 and channel 2 time-delayed
24 V AC / DC (+ 25-20 \%) (electronic fuse)
ca. 4,8 W
$<400 \mathrm{~ms}$ / $<30 \mathrm{~ms}$ / adjustment
6 A, 250 V AC, 24 V DC
6 mA
SAFE TN: $1 \mathrm{~s} /$ SAFE TA,TR: $3 \mathrm{~s} / \mathrm{TU}$: infinite
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA (resistive load)
3,6 A
When releasing E-Stop button or opening the safety gate (E-Stop circuit are open) the contacts 13-14 and 23-24 (outputs) open. The contacts 47-48 / 57-58 open delayed at the adjusted time.

SAFE TN: standby time after applying of the supply voltage $<0,95 \mathrm{~s}$. Opening of the E-Stop circuits meanwhile results to failure.
SAFE TA: standby time after applying of the supply voltage $<0,95 \mathrm{~s}$. Opening of the E-Stop circuits meanwhile results to several activations of the outputs after the standby time.
SAFE TR: restart is possible during standby time.
SAFE TU: standby time after applying of the supply voltage $<0,95 \mathrm{~s}$. Opening of the E-Stop circuits meanwhile results to several activations of the outputs after the standby time.

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 74,61 years / high, DC: 99\% / high,
CCF: achieved

E-stop and safety gate relays with time-delay

SAFE T ON

Emergency stop and safety gate monitoring relay with immediate and delayed outputs
CE, TÜV, UL, C-UL
$2 \mathrm{NO}, 2 \mathrm{NO}$ start up delayed, 1 NC
Cross circuit protection or single-channel
Time delay $0,05 \mathrm{~s}-600 \mathrm{~s}$ in 64 steps,
automatic or manually start with start button
Power, channel 1 , cannel 2 , channel 1 and 2 delayed-on energisation
$24 \mathrm{VAC} / \mathrm{DC}(+25-20 \%$) (electronic fuse)

Multifunctional relay with time-delay

SAFE FLEX T (OUTLOOK)

Safety controller

with choosable multi functions and adjustable time delay
CE, (TÜV, UL, C-UL pending)
4 NO (1x basic insulation), 2 NO time-delayed, 1 NC (basic insulation),
1 auxiliary outputs time-delayed
LED indicators for status and supply diagnostic Optical failure indication by LEDs, Automatic start possible

24 V DC (+ 20-25 \%)
Overvoltage protection
ca. 4,8 W
$400 \mathrm{~ms} / 30 \mathrm{~ms}$
6 A, 250 V AC, 24 V DC
6 mA
no
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA (ohm load)
3,6 A
If the input circuits S11, S12 and S21, S22 are closed and the start button is released, the safety circuits 13-14, 23-24 will close. By pressing the stop button, the safety circuits 13-14 and 23-24 open. After the set time period has elapsed, the relay K3 and K4 energise. The safety gate switch is released and the safety gate can be opened. By pressing the start button the relay K3 and K4 are energised, K1 and K2 energised and close the safety circuits 13-14 and 23-24.

5 mA

depending on the choosen functionality (see technical data)
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
6 A quick acting or 4 A time lag

EN ISO 13849-1 / EN 62061: PLe, Cat. 4 / SIL3, SIL CL3
PFH: $3,4^{*} 10^{-9} 1 / \mathrm{h}$, PFD: $9,32^{*} 10^{-6} 1 / \mathrm{h}$, SFF: 94%,
MTTFd: >100 years / high, DC: $99 \% /$ high, CCF: achieved

EN ISO 13849-1 / DIN EN 61508 / DIN EN 62061:
Specific values in progress

E-stop / mat-, edges-control relays

Mat-, edges-control relays

SAFE CM

Safety controller for safety mats and safety bars with a maximum 500 ohms or a finalizing resistor $8,2 \mathrm{kOhms}$
CE, TÜV, UL, C-UL
4 safety semiconductor outputs (OSSD)
LED indicators for status and supply diagnostic
wearless semiconductor outputs, "AND" function
between several SAFE C possible, automatic start possible
Power, channel 1 and channel 2
24 V DC (+25-20 \%)
Overvoltage protection
ca. 3 W
$<30 \mathrm{~ms}$ / $<140 \mathrm{~ms}$ (single channel <360 ms)
total current 1,8 A
infinite
not necessary
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
to 43 W
short circuit proof
4 wire technology with wire break protection or 2 wire technology and terminating resistor with wire break protection are optional. Start monitoring and automatic start are optional. For monitoring of external relays to n.c. contacts are put in series of the start circuit "AND" function among several SAFE C is possible.
$\mathrm{A} 1+24 \mathrm{~V}$ DC
A2 $0 V D C$

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 73,21 years / high, DC: Cat. 4: 99% / high, CCF: achieved

EN ISO 13849-1 / EN 61508: PLe, Cat. 4 / SIL3
MTTFd: 163 years / high, DC: high, CCF: achieved, PFH: $2,87^{* 1} 10^{-9} \frac{1}{\mathrm{~h}}$, PFD: $2,01 * 10^{-6} \frac{1 / \mathrm{h}}{}$, SFF: 0,9573
\& safety

SAFE 2.2

SAFE M / SAFE M. 1

Mat and contact edges control relay with a max. mats-resistance of 200 ohms
CE, TÜV, UL, C-UL
3 normally open safety, 1 normally auxiliary closed
LED indicators for status and supply diagnostic Opposite polarity between chanels
With (SAFE M) and without (SAFE M.1) automatic start
Power, channel 1 and channel 2
24 V AC / DC (electronic fuse)
SAFE M: 115 V AC (with galvanic disconnection / transformer)
24, 115 V AC: ca. 5 VA, 24 V DC: 3 W
$<50 \mathrm{~ms} /<30 \mathrm{~ms}$ (24 V AC $<50 \mathrm{~ms}$)

5 A, 240 V AC, 24 V DC

6 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1200 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied to terminals A1 and A2. Power LED illuminates and 24 V DC is available at terminal S11. Terminals S12 and S22 must be connected according to the application example selected to meet the application requirements. To start the unit terminals S33 and S34 must be bridged with a normally open contact. The unit works if you close this contact. At this time the contacts 13-14, or bridge for automatically start 23-24 and 33-34 are closed. The LEDs channel 1 and channel 2 illuminate. In series to this start button an external contactor can be controlled.
For automatic start (SAFE M only) the terminals S33 and S34 must be brigded. The safety mats and safety bars must be of 4 wire technology or 2 wire technology and have to agree to the cross circuit principle.

For version with detachable clamps (screw - or cage clamps) ...
please ask our sales team!

EN ISO 13849-1: PLe, Cat. 3
MTTFd: 73,21 years / high, DC: 90% / medium, CCF: achieved PFH: $5,81 * 10^{-9} / \mathrm{h}$, SFF: 99%

Mat and contact edges control relay

CE, TÜV, UL, C-UL
2 normally open safety
LED indicators for status and supply diagnostic
Safety category 4, opposite polarity between channels without start control
Power, channel 1 and channel 2
$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ (electronic fuse)
ca. 2,5 VA / $2,5 \mathrm{~W}$
$<50 \mathrm{~ms} /<30 \mathrm{~ms}$
6 A, 250 V AC, 24 V DC
1 mA
Simultaneous protective door contacts: ca. 40 ms
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA (resistive load)
6,3 A quick acting or 4 A time lag
A supply voltage must be applied to terminals A1 and A2. Power LED illuminates and 24 V DC is available at terminal S11. Terminals S12 and S22 must be connected according to the application example selected to meet the application requirements. To start the unit terminals S33 and S34 must be bridged with a normally open contact. The unit works if you close this contact. At this time the contacts 13-14 and 23-24 are closed. The LEDs channel 1 and channel 2 illuminate. In series to this start button an external contactor can be controlled. SAFE 2.2 can be used as control relay for safety mats and safety contact edges. These mats and edges must work like a normally opened contact. If someone steps on the mats or presses the contact edges the normally opened contact closes and SAFE 2.2 detects this.

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 69 years / high, DC: 99% / high,
CCF: achieved

Control devices for safety light barriers

SAFE L. 2

Emergency stop relay
for safety light curtains / barriers
CE, TÜV, UL, C-UL
3 normally open safety
LED indicators for status and supply diagnostic
Without opposite polarity between channels
start control choosable by a extern bridge
Power, channel 1, channel 2 and restart interlock
24 V DC (electronic fuse)

ca. 2,5 W

$<50 \mathrm{~ms}$ / $<30 \mathrm{~ms}$
6 A, 250 V AC, 24 V DC
10 mA
Simultaneous: ca. 40 ms
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA (resistive load)
6 A quick acting or 4 A time lag
A supply voltage must be applied to terminals A1 and A2. The "Power" and "restart interlock" LED's illuminate. If this is done, a voltage of 24 V DC is available on the terminal S 11 . Terminals S 12 and S 22 must be wired as shown in the application examples. To start the module, the terminals Y1 and Y2 must be bridged over normally open contact. In the following the contacts 13-14, 23-24 and 33-34 are closed.
The LED's of channel 1, channel 2 are illuminate and "restart interlock" must be switched off. In series to the start-button, wired on terminals Y1 and Y2, an external contactor can be controlled. Monitoring of the reset circuit can be configured by external bridge between terminals BR1 an BR2.

For version with detachable clamps (screw - or cage clamps) ... please ask our sales team!

Control devices for safety light barriers

SAFE CL

Safety controller
for safety light barriers and safety light curtain
CE, TÜV, UL, C-UL
4 safety semiconductor outputs (OSSD)
LED indicators for status and supply diagnostic
Wearless semiconductor outputs, "AND" function
between several SAFE C possible, automatic start possible
Power, channel 1, channel 2
24 V DC (+ 25-20 \%)
Overvoltage protection
ca. 3 W
$<70 \mathrm{~ms}$ / $<30 \mathrm{~ms}$
total current bis 1,8 A
infinite
$\mathbf{S} 12$ before $\mathbf{S 2 2}<0,5 \mathrm{~s} / \mathrm{S} 22$ before $\mathbf{S 1 2}$ infinite
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
to 43 W
short circuit proof
Even ESPE type 4 with OSSDs and relay contacts as well as ESPE type 2 with one OSSD and test input are supported. Monitoring of movement direction is available by different simultaneousnesses.

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 36,16 years / high, DC: 99\% / high, CCF: achieved
\& safety

Two hand control relays

SAFE Z. 2

Two hand control relay
for type I-III c
CE, TÜV, UL, C-UL
2 normally open safety, 1 normally auxiliary closed, 1 PLC-output
LED indicators for status and supply diagnostic
Two hand control relay according ZH 1 / 456 and DIN EN 574
Power, channel 1 and channel 2
$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ (electronic fuse)
48, 115, 230 V AC (with galvanic disconnection / transformer)
ca. 2 VA
$<50 \mathrm{~ms} /<25 \mathrm{~ms}$
6 A, 250 V AC, 24 V DC
6 mA
Simultaneous: 0,5 s
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA (resistive load)
6,3 A quick acting or 4 A time lag
After supply voltage was applied to terminals A1 and A2, the SAFE Z will be ready for operation. The power LED illuminates. If the button S1 is pressed and within $0,5 \mathrm{sec}$. the button S 2 also pressed, the outputs 13-14, 23-24 are closed and 31-32 will be opened. The machine will be started. The PLC-output (34) is connected with 24 V supply voltage. If one or both buttons are released, the outputs 13-14 and 23-24 open immediately. The output 31-32 closes. Only after releasing of both buttons S1 and S2, a new cycle can be started. If the time for pressing the buttons S 1 and S 2 will be longer than $0,5 \mathrm{sec}$., the outputs were not released. The outputs 13-14 and 23-24 keep open. The machine cannot be started. On the terminals Y1 and Y 2 machine release circuit (repeating contactor control) or a bridge can be connected.

For version with detachable clamps (screw - or cage clamps) ...
please ask our sales team!
Still available: RS-NAGZ with an additionally auxiliary contact. For further information please see the manual or www.automation-safety.com

SAFE CZ

Two hand control relay
for type IIIc or II
CE, TÜV, UL, C-UL
4 safety semiconductor outputs (OSSD)
LED indicators for status and supply diagnostic
wearless semiconductor outputs, "AND" function
between several SAFE C possible, automatic start possible
Power, channel 1 and channel 2
24 V DC (+ 25-20 \%)
Overvoltage protection
ca. 3 W
$<100 \mathrm{~ms} /<25 \mathrm{~ms}$
total current bis 1,8 A
infinite
$0,5 \mathrm{~s}$
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
to 43 W
short circuit proof
In use of the application below the simultaneousness of both switches is monitored (less than $0,5 \mathrm{~s}$). This behaviour corresponds to EN 954-1 safety category 4.
This application is suitable for type II of DIN EN 574 and corresponds to EN 954-1 safety category 3.
Wiring changes during operation are not allowed and lead to a failure message. Application corresponds to EN 954-1 type IIIc and safety category 4, EN IEC 62061 up to SIL3 and EN ISO 13849-1 up to PLe.

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 36,45 years / high, DC: 99% / high,
CCF: achieved

EN ISO 13849-1/ EN 61508: PLe, Cat. 4 / SIL3
MTTFd: 163 years / high, DC: high, CCF: achieved, PFH: $2,87 * 10^{-9} 1 / \mathrm{h}$, PFD: $2,01 * 10^{-6} \frac{1 / \mathrm{h}}{}$, SFF: 0,9573

Two hand control relays

SAFE Z

Two hand control relay
for type I-III c
CE, TÜV, UL, C-UL
2 normally open safety, 1 normally auxiliary closed
LED indicators for status and supply diagnostic
Two hand control relay according ZH 1 / 456 and DIN EN 574
Power, channel 1 and channel 2
24 V DC (electronic fuse)
ca. 3 VA
$<50 \mathrm{~ms}$ / $<30 \mathrm{~ms}$
6 A, 250 V AC, 24 V DC
1 mA
Simultaneous: $0,5 \mathrm{~s}$
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA (resistive load)
6 A quick acting or 4 A time lag
After supply voltage was applied to terminals A1 and A2, the SAFE $Z .2$ will be ready for operation. The power LED illuminates. If the button S 1 is pressed and within 0,5 sec. the button $S 2$ is also pressed, the outputs 13-14, 23-24 are closed and $31-32$ will be opened. The machine will be started. If one or both buttons are released, the outputs 13-14 and 23-24 open immediately. The output 31-32 closes. Only after releasing the both buttons $\mathbf{S 1}$ and $\mathbf{S 2}$, a new cycle can be started. If the time for pressing the buttons S1 and S2 will be longer as $0,5 \mathrm{sec}$., the outputs were not released. The outputs 13-14 and 23-24 keep open. The machine cannot be started. On the terminals Y1 and Y2 machine release circuits (repeating contactor control) can be connected.

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 185 years / high, DC: 99\% / high,
CCF: achieved

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 36,85 years / high, DC: 99% / high, CCF: achieved

Expansion modules

SAFE X4 / SAFE X4.1

Expansion module
for emergency stop relay according to VDE 0113
CE, TÜV, UL, C-UL
4 normally open safety and 1 normally safety closed (feedback)
With (SAFE X4) and without (SAFE X4.1) opposite polarity between channels
Easy way to increase the number of contacts
Compact housing
Channel 1, channel 2 and fault
48, 110-127, 230 V AC (with galvanic disconnection / transformer)
24 V AC / DC (without galvanic disconnection, but with a safety resistor)
ca. 4 VA

- / <15 ms

6 A, 250 V AC, 24 V DC, sum of currents <16 A
6 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA
10 A quick acting
The expansion module is used to increase the number of outputs of a safety relay according to VDE 0113. Several expansion modules can be connected to one safety relay. A supply voltage must be applied at terminals A1 and A2 in order to operate the device. If this is done there is a voltage of 24 V DC at terminal U 1 . Terminals K21 and K1 must be wired as shown in the application examples. To start the module, closed safety circuits from the safety relay must be connected with K21 and K1 and contacts 13-14,
$23-24,33-34,43-44,53-53,63-64,73-74$ and $83-84$ close. The LED's channel 1 and 2 illuminate. The stop LED illuminates if one or more safety circuits are open. The stop LED will be illuminated while the expansion module relay is operational.

For version with detachable clamps (screw - or cage clamps) ...
please ask our sales team!

SAFE IRZ. 2
Industrial relay with positive guided contacts
CE
2 change over contacts
LED indicators for status and supply diagnostic
Initializing input
Power
24 V AC / DC
$1 \mathrm{~W}, 1 \mathrm{VA}$
<25 ms
$5 \mathrm{~A}, 250 \mathrm{VAC}, 24 \mathrm{~V}$ DC
$100 \mathrm{~mA}{ }^{(9)}$
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1250 VA
5 A quick acting
The device is an industrial relay with positive guidance for high switching cycles. The delay on and delay off times are smaller than 25 ms . After connecting the power supply on terminals A1 and A2 the relay activates immediately. If the power on terminals A 1 and A 2 is removed, the relay drops into the initial state.
(*) We offer all devices which have a contact capacity of min. 100 mA at 24 V DC with hard gold-plated contacts. In this way you get a contact capacity of 4 mA . If you want such a relay please write for example "AR. 1632.2010 hard gold-plated contacts"

RS-NAGX 5

Expansion module
for emergency stop relay according to VDE 0113
CE, TÜV (UL, C-UL pending)
5 normally open safety and 1 normally safety closed (feedback)
LED indicators for status and supply diagnostic
Easy way to increase the number of contacts
Compact housing
Channel 1 and channel 2
24 V AC / DC (without galvanic disconnection, but with a safety resistor)
ca. 2,4 VA
<30 ms
6 A, 250 V AC, 24 V DC, sum of currents <16 A
6 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ 1500 VA
6 A quick acting or 4 A time lag
Input circuit A1 is to be connected with one of the redundant safety outputs (1314). Errors of the expansion unit will be announced over the feedback control loop (Y1-Y2) and the next activation will be disabled.
In case of protected wiring (short current circuit exclusion) and regularly tests, for example during maintenance, up to safety category 4.

EN ISO 13849-1: PLe, Cat. 4
MTTFd: 74,2 years / high, DC: 99\% / high,
CCF: achieved
\& safety

Multifunctional

SAFE FLEX

Safety controller
with choosable multi functions
CE, TÜV, (UL, C-UL pending)
2 normally open, 1 PNP output
LED indicators for status and supply diagnostic
optical failure indication by LEDs
Selectable monitored or not monitored start
Power, channel 1 IN / OUT, channel 2 IN / OUT, failure
24 V DC ($+20-25 \%$)
Overvoltage protection

<3 W

e-stop, BWS, Two hand, safety gate monitoring relay $<=30 \mathrm{~ms}$
6 A, 250 V AC, 250 V DC
5 mA
depending on the choosen functionality (see technical data)
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA
6 A quick acting or 4 A time lag
By wiring the following functionality is are choosable:

- E-Stop safety controller cat. 4
- safety gate controller cat. 4
- Two-Handed safety controller cat. 3c
- ESPE safety controller (light barriers and curtains) cat. 4 and cat. 2
- single pole safety devices with cyclic testing cat. 4

Wiring changes during operation are not allowed and lead to a failure message.

Muting

RS-NAGU. 1 / RS-NAGU.2f

Muting contro

RS-NAGU.1: CE, TÜV, UL, C-UL,
RS-NAGU.2f: CE, TÜV, UL, C-UL
RS-NAGU.1: 3 electr. Safety semicond. outp. / RS-NAGU. 2 f: 3 normally open
4 muting sensors connectable
Control of filament of external muting lamp
pushbutton
Power indication, channel 1, channel 2, fault and restart interlock
24 V DC

10 W (up to 60W including peripheral devices)
RS-NAGU.1: <6 ms - RS-NAGU. 2 f <20 ms
RS-NAGU.1: 0,7-1,5 (${ }^{(22)}$, 24 V DC / RS-NAGU.2f: 1,5 A, 24 V AC / DC
RS-NAGU.1: $1 \mathrm{~mA} /$ RS-NAGU.2f: $100 \mathrm{~mA}^{(*)}$
Simultaneous of the muting sensors: 3 s
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
NAGU.1: 17 W, NAGU.2f: 84 W
RS-NAGU.1: outputs are permanently short circuit proof
RS-NAGU.2f: 1 A quick acting or 3,15 A time lag
NAGU is used for muting of safety light barriers and safety light curtains, so that material - transport to or from a machine can be done. Applications can be found in the automotive industry, packaging machines or at highly automated production systems. The differentiation between human beings and material flow is done with up to four muting sensors or two safety light barriers. Inductive sensors or mechanical switches can also be used as muting sensors. After connection as per application guide, the device will be ready as soon as the power LED's and channel 1 and channel 2 are illuminated. If LED's channel 1 / 2 are blinking, a fault exists or a wrong connection has been made. In ready condition the RS-NAGU can be started by pushing the start key. If it cannot be started, then at least one of the muting sensors is blocked or not connected correctly. If a muting sensor is blocked by material supply, a muting can be initiated by actuation of the key switch. If the light barrier is interrupted after a muting cycle, RS-NAGU can be activated by pushing the start key after the failure has been fixed.

As soon as muting sensors 1 and 2 , respectively 3 and 4 will be activated within 3 sec., the RS-NAGU will initiate a muting cycle. Muting takes place so long the inputs of both groups of muting sensors are in active state plus $0,25 \mathrm{~s}$ time-delay.

RS-NAGU.1: 3 electronic safety semiconductor outputs.
RS-NAGU 2f: 3 normally open safety, 3 normally open signal outputs (release, and safety light barrier)
(*) We offer all devices which have a contact capacity of min. 100 mA at 24 V DC with hard gold-plated contacts. In this way you get a contact capacity of 4 mA .
(*2) 1,5 A permanent current (1 output) up to 4,5 A peak current ($\mathrm{t}<1 \mathrm{~s}, \mathrm{UV}>21,6 \mathrm{~V}$), 1 A permanent current (2outputs), 0,7 A permanent current (3 outputs)

Notice: please ask for detailed documentation.
EN ISO 13849-1 / EN 62061: PLe, Cat. 4 / SIL3
MTTFd: >100 years / high, DC: 99% / high, CCF: achieved, PFH: 2,15*10-91/h, SSF: 94,65\%

MTTFd: >100 years / high, DC: 99% / high,
CCF: achieved

\& safety

Safety standstill monitor

SAFE SM

Safety standstill monitor
CE, (TÜV, UL, C-UL pending)
2 normally open, 1 PNP output
LED indicators for status and supply diagnostic optical failure indication by LEDs
Selectable monitored or not monitored start
Power, channel 1 IN / OUT, channel 2 IN / OUT, failure
24 V DC (+20-25 \%)
Overvoltage protection
<3 W
frequency dependent
6 A, 250 V AC, 250 V DC
5 mA
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
1500 VA
6 A quick acting or 4 A time lag
The SAFE SM is a safe standstill monitor. It is designed to monitor safe speeds. Digitally switches e.g. inductive sensors or ESPD's are supported. SAFE SM is a two channel device. Therefore, two digitally switches are necessary. Four safe speeds are monitored: $0.2 \mathrm{~Hz}, 0.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}$ and 2.0 Hz , the shifting is done via configuration wirings.
The SAFE SM monitors the speed directly on any part of the machine, means not only the motor is monitored. Even breakages are to be monitored. Rotational and translational moves are monitored as well.

ع

Overview of the standards:

\& safety

The replacement of EN 954-1

Previously, the machine constructing engineer had, according to the EN 954-1 (safety-related parts of control systems, part 1: General design principles) to proof the compliance of the general safety requirements according to the European machinery directive.

This standard demanded a risk analysis with the resulting safety categories ($B, 1,2,3,4$). B stands for low and almost no safety respectively, 4 stands for high safety. The safety devices for a system were chosen with the safety category.

The EN 954-1 was replaced because programmable electronic systems were considered insufficiently and the time response (e.g. testing intervals, life cycles) and the failure probability of components were not considered. The following standards EN 13849-1 (safety of machines - safety-related parts of control systems, part 1: General design principles) and EN 62061 (safety of machines - functional safety of electrical, electronic and programmable electronic control systems) create remedy and consider the above approaches.

Definition of the safety requirements

It is divided into two parts: Safety of machines and the functional safety.

Safety of machines

After finished risk evaluation according to EN ISO 14121-1, measures for reducing of the detected risks will be defined. Afterwards, the risks will be reduced up to an acceptable residual risk.

Functional safety

The functional safety follows from the results of the machinery safety. The functional safety is divided into 6 steps:

1. Definition of the safety-technological requirements
2. Selection of the required performance
3. Selection of the
4. Safety design
5. Safety design
6. Definition of
7. Verification
8. Verification
6 . Validation

Definition of the safety-technological requirements

The required safety function characteristics are defined e.g. ESPD-function with automatic start, no simultaneity, etc. and a detailed description with the necessary interfaces to the other parts of control systems will be prepared.

Selection of the required performance

The definition is done with a risk graph. For new systems it can be generally done with two standards:
EN 13849-1 (Safety of machines - safety-related parts of control systems, part 1: General design principles)
With the risk graph it is possible to investigate all safety-related functions and areas of a machine respectively. The results are the so-called Performance Level / PL (a-e). The PL is needed for the selection of the safety setup and the corresponding components including wiring. The a stands for low safety and the \mathbf{e} for high safety.

EN 62061 (Safety of machines - functional safety of safety-related electrical, electronic and programmable electronic control systems)
With the risk graph it is possible to investigate all safety-relevant functions and areas of a machine respectively. The results are the so-called Safety Integrity Level / SIL (1 - 3). The SIL is required for the selection of the safety setup and the corresponding components including wiring. The 1 stands for low safety and the 3 for high safety.

Effect and severity	S	Frequency and duration	F	Probability	P Avoidance		Class K ($=\mathrm{F}+\mathrm{P}+\mathrm{A}$)					
							A	3-4	5-7	8-10	11-13	14-15
Death, losing an eye or arm	4	$\leq 1 \mathrm{~h}$	5	very high	5			SIL2	SIL2	SIL2	SIL3	SIL3
Permanent, losing a finger	3	$>1 \mathrm{~h}-\leq 1$ day	5	likely	4				OM	SIL1	SIL2	SIL3
Reversible, requiring attention from a medical practioner	2	> 1 day - ≤ 2 weeks	4	possible	3	impossible	5			OM	SIL1	SIL2
Requiring first help	1	>2 weeks - ≤ 1 year	3	rarely	2	possible	3				OM	SIL1
		> 1 year	2	negligible	1	likely	1					

Safety design

The safety function described in step 1 is designed. The single components are defined, e.g. safety relais SAFE CL for the ESPD-function.

Definition of the achieved performance

The actual performance of the safety function is detected. The safety function is divided in sensors, logic and actuators. The parameters required to calculation are provided by the component manufactures.

Verification

For each single safety function, the in step 4 achieved performance has to be bigger or equal as the in step 2 defined required performance. If this is not the case the safety function has to be improved.

Validation

For the safety function, the validation ensures that all safety-relevant parts achieve the requirements.

Technical data

Pay attention to housing with detachable terminal strips: if you would like to detach the terminal strips please take away the power first.

- The ground wire has to be connected to terminal PE when an auxillary voltage used (at the terminals A1 and A2) UB~ / with galvanic disconnection to connect a protective conductor. By AC / DC or DC - devices is this not permitted.

All operating instructions can be found under www.automation-safety.com

Developement

Special advantages

- emergency stop according to EN60204
- redundant positiv guided relay
- cyclical monitoring of the function
- housing with detachable terminal strip (for a quick change of the devices) by the NAG-line (without RS-NAGU. 1 / RS-NAGU.2f)
- wireless layout
- housing of self extinguishing plastic according to UL 94-V1
- 100\% computer assisted check

Dimensions

RS-NAGMP
RS-NAGMP.1
RS-NAGV

Dimensions

	$\mathrm{B}[\mathrm{mm}]$			
SAFE 4 ／ 4.1	22，5			
SAFE 4 eco／ 4.1 eco	22，5			
SAFE 4.2 eco／ 4.3 eco	22，5		－99－	${ }^{-8-}$
SAFE 5／ 5.1	22，5			\square
SAFEC1	22，5			7rat
SAFECL	22，5		1	\square
SAFE CM	22，5		；	Bime
SAFECZ	22，5		\square－	표표
SAFE M／M． 1	22，5	－	－ 20	Eth
SAFE L． 2	22，5	$=$		縎號
SAFE X4／ 4.1	22，5			明込
SAFE Z． 2	22，5			H0y
SAFE FLEX	22，5		－	
SAFE FLEX T	45 225		－－－	\square
SAFE T	35			
SAFE TON	35			

Legend：
1－Attachment rail DIN 46277
Printed：01．08．2013
We reserve the right to make changes to the technical specification．
Not responsible for typographical text and drawing errors．With this leaflet all leaflets
before are no longer valid．Since text and pictures in this folder are only for handling and illustration，
we cannot take over adhesion for possible errors．

Product- / part number index

Type::	Voltage:	Part.-Nr.:
SAFE 4	24 V AC/DC	AR. 9659.2000
SAFE 4	110 V AC	AR. 9659.4000
SAFE 4	230 V AC	AR.9659.5000
SAFE 4.1	24 V AC/DC	AR. 9660.2000
SAFE 4.1	110 V AC	AR. 9660.4000
SAFE 4.1	230 V AC	AR. 9660.5000
SAFE 4 eco	24 V AC/DC	AA. 9675.2000
SAFE 4 eco	115 V AC	AA.9675.4000
SAFE 4 eco	230 V AC	AA.9675.5000
SAFE 4.1 eco	24 V AC/DC	AR.9678.2000
SAFE 4.1 eco	115 V AC	AR. 9678.4000
SAFE 4.1 eco	230 V AC	AR.9678.5000
SAFE 4.2 eco	24 V AC/DC	AR.9676.2000
SAFE 4.2 eco	115 V AC	AR.9676.4000
SAFE 4.2 eco	230 V AC	AR.9676.5000
SAFE 4.3 eco	24 V AC/DC	AR.9677.2000
SAFE 4.3 eco	115 V AC	AR.9677.4000
SAFE 4.3 eco	230 V AC	AR.9677.5000
SAFE 5	24 V AC/DC	AR.9645.2000
SAFE 5.1	24 V AC/DC	AR.9646.2000
SAFE C1	24 V DC	AR. 9680.9000
SAFE 1	24 V AC/DC	AR.9655.2000
SAFE 1.1	24 V AC/DC	AR.9654.2000
SAFE 2	24 V AC/DC	AR.9656.2000
SAFE 2.1	24 V AC/DC	AR.9657.2000
SAFE S. 6	24 V DC	AR.9650.9000
SAFE S. 6	24 V AC	AR. 9650.8000
SAFE S. 6	24 V AC/DC	AR. 9650.2000
SAFE S. 6	48 V AC	AR. 9650.3000
SAFE S. 6	110-127 V AC	AR. 9650.4000
SAFE S. 6	230 V AC	AR.9650.5000
NAGMP	12 V DC	AR.9605.1001
NAGMP	24 V DC	AR.9605.9001
NAGMP	24 V AC	AR.9605.8001
NAGMP	24 V AC/DC	AR.9605.2001
NAGMP	110-127 V AC	AR.9605.4001
NAGMP	230 V AC	AR.9605.5001
NAGMP. 1	12 V DC	AR.9605.1002
NAGMP. 1	24 V DC	AR.9605.9002
NAGMP. 1	24 V AC	AR. 9605.8002
NAGMP. 1	24 V AC/DC	AR.9605.2002
NAGMP. 1	110-127 V AC	AR.9605.4002
NAGMP. 1	230 V AC	AR.9605.5002

Type::	Voltage:	Part.-Nr.:
NAGV	24 V DC	AR.9640.9000
NAGV	24 V AC	AR. 9640.8000
NAGV	24 V AC/DC	AR. 9640.2000
NAGV	48 V AC	AR. 9640.3000
NAGV	110-127 V AC	AR. 9640.4000
NAGV	230 V AC	AR. 9640.5000
SAFE TN	24 V AC/DC	AR. 9621.2010
SAFE TA	24 V AC/DC	AR. 9621.2011
SAFE TR	24 V AC/DC	AR. 9621.2012
SAFE TU	24 V AC/DC	AR. 9621.2013
SAFE TON	24 V AC/DC	AR.9621.2100
SAFE FLEX T	24 V DC	on request
NAGAO	24 V DC	AR. 9665.9000
NAGAO	24 V AC	AR. 9665.8000
NAGAO	24 V AC/DC	AR. 9665.2000
NAGAO	48 V AC	AR. 9665.3000
NAGAO	115-127 V AC	AR. 9665.4000
NAGAO	230 V AC	AR. 9665.5000
SAFE CM	24 V DC	AR. 9680.9002
SAFE M	24 V AC/DC	AR. 9647.2000
SAFE M	115 V AC	AR. 9647.4000
SAFE M. 1	24 V AC/DC	AR. 9648.2000
SAFE 2.2	24 V AC/DC	AR.9657.2010
SAFE L. 2	24 V AC/DC	AR. 9671.2100
SAFE CL	24 V DC	AR.9680.9001
SAFE Z. 2	24 V AC/DC	AR. 9673.2000
SAFE Z. 2	48 V AC	AR. 9673.3000
SAFE Z. 2	110-127 V AC	AR. 9673.4000
SAFE Z. 2	230 V AC	AR. 9673.5000
SAFE CZ	24 V DC	AR.9680.9003
SAFE Z	24 V DC	AR. 9672.9000
SAFE X4	24 V AC/DC	AR. 9613.2000
SAFE X4	48 V AC	AR. 9613.3000
SAFE X4	110-127 V AC	AR. 9613.4000
SAFE X4	230 V AC	AR. 9613.5000
SAFE X4.1	24 V AC/DC	AR. 9613.2010
SAFE X4.1	48 V AC	AR. 9613.3010
SAFE X4.1	110-127 V AC	AR. 9613.4010
SAFE X4.1	230 V AC	AR. 9613.5010
SAFE IRZ. 2	24 V AC/DC	AR. 1632.2010
NAGX5	24 V AC/DC	AR. 9615.2000
SAFE FLEX	24 V DC	AR. 9690.2000
NAGU. 1	24 V DC	AR. 9667.9010
NAGU. 2 f	24 V DC	AR.9667.9020
SAFE SM	24 V DC	AR.9669.8000

No longer available:

Type::	Voltage:	Part.-Nr.:	Succeeding product: refer technical data	Type::	Voltage:	Part.-Nr.:	Succeeding product: refer technical data
NAGE	24 V AC	AR. 9607.8000	NAGMP / MP. 1	NAGX4	24 V AC	AR. 9614.8000	SAFE X. 4 / X4.1 or NAGX5
NAGE	24 V AC/DC	AR.9607.2000	NAGMP / MP. 1	NAGX4	24 V AC/DC	AR. 9614.2000	SAFE X. 4 / X4.1 or NAGX5
NAGE	24 V DC	AR.9607.9000	NAGMP / MP. 1	NAGX4	24 V DC	AR. 9614.9000	SAFE X. 4 / X4.1 or NAGX5
NAGE	110-127 V AC	AR. 9607.4000	NAGMP / MP. 1	NAGX4	110-127 V AC	AR. 9614.4000	SAFE X. 4 / X4.1
NAGE	230 V AC	AR.9607.5000	NAGMP / MP. 1	NAGX4	230 V AC	AR. 9614.5000	SAFE X. 4 / X4.1
NAGK	12 V AC/DC	AR.9662.1000	NAGAO	NAGX8	24 V AC	AR. 9618.8000	two SAFE X. 4 / X4.1 or NAGX5
NAGK	24 V AC	AR.9662.2000	NAGAO	NAGX8	24 V AC/DC	AR. 9618.2000	two SAFE X. 4 / X4.1 or NAGX5
NAGK	110-127 V AC	AR.9662.4000	NAGAO	NAGX8	24 V DC	AR. 9618.9000	two SAFE X. 4 / X4.1 or NAGX5
NAGK	230 V AC	AR.9662.5000	NAGAO	NAGX8	110-127 V AC	AR.9618.4000	two SAFE X. 4 / X4.1
NAGM	12 V AC/DC	AR.9605.1000	NAGMP / MP. 1	NAGX8	230 V AC	AR. 9618.5000	two SAFE X. 4 / X4.1
NAGM	24 V AC	AR. 9605.8000	NAGMP / MP. 1	NAGA	24 V AC	AR. 9663.8000	SAFE M/M. 1 or SAFE 4.2 eco
NAGM	24 V AC/DC	AR. 9605.2000	NAGMP / MP. 1	NAGA	24 V AC/DC	AR. 9663.2000	SAFE M/M. 1 or SAFE 4.2 eco
NAGM	24 V DC	AR. 9605.9000	NAGMP / MP. 1	NAGA	24 V DC	AR. 9663.9000	SAFE M/M. 1 or SAFE 4.2 eco
NAGM	110-127 V AC	AR. 9605.4000	NAGMP / MP. 1	NAGA	110-127 V AC	AR. 9663.4000	SAFE M/M. 1 or SAFE 4.2 eco
NAGM	230 V AC	AR. 9605.5000	NAGMP / MP. 1	NAGA	230 V AC	AR. 9663.5000	SAFE M/M. 1 or SAFE 4.2 eco
NAGT	24 V AC/DC	AR.9661.2000	SAFE T...	NAGL	24 V AC/DC	AR. 9610.2000	SAFE FLEX or SAFE L. 2
NAGT	110-127 V AC	AR. 9661.4000	SAFE T...	NAGL	48 V AC	AR. 9610.3000	SAFE FLEX or SAFE L. 2
NAGT	230 V AC	AR. 9661.5000	SAFE T...	NAGL	110-127 V AC	AR. 9610.4000	SAFE FLEX or SAFE L. 2
NAGT. 1	110-127VAC	AR. 9661.4005	SAFE T...	NAGL	230 V AC	AR. 9610.5000	SAFE FLEX or SAFE L. 2
NAGT. 1	230 V AC	AR.9661.5005	SAFE T...	NAGL. 1	24 V DC	AR. 9610.9003	SAFE FLEX or SAFE L. 2
NAGU. 12	24 V DC	AR.9667.9012	NAGU. 1				

[^1]
Infos on our business division EMS (electronic manufacturing service):

Development, production and tests for user-specific electronic devices and assemblies
www.riese-electronic.com

- Our customers are situated in the business of engineering, automation, automotive, medical technology and control devices.
- riese electronic employs 120 staff at it's two plants in Horb (Baden-Württemberg) and Langenwolschendorf (Thuringia).
- partners in Hungary and China

Further product line on our business division A+S (automation \& safety) :

てieك automation \& safety

producer of time, measuring and safety relays, representative of automation and safety products
www.automation-safety.com

Since 1987 riese electronic has been developing, producing and testing the time-delay and measuring relays. We not just test our relay after it's finished we test it at every step of production! Our testing strategy thoroughly checks all functions of every single relay by means of a computerized testing system which we developed ourselves. We simulate situations in which the worse scenarious happen all at once. Only after such testing does a relay get the "thumbs-up". Therefore, "riese-relays" are ideally situated to rough environments, e.g. severe vibrations, temperature fluctuations or voltage discrepancies.

Special features

- 12 V relays, e.g. for vehicles, vehicle mountings We have developed a number of relays especially for this purpose. Not all types are included in this leaflet so please call us for details.
- 24 V relays, e.g. for railways, tram systems. Peculiar to railways and tram systems is the fact that the voltage changes depending on the number of vehicles. We have managed to overcome these and other specific problems.
- Brand-name labeling. Do you need relays with your company logo? No problem!
- Special designs. If you can't find the relay you're looking for in our range, then please contact our design department. We relish the opportunity to discover new ways of optimizing your applications.

Headquarter	Subsidiary East	25
riese electronic gmbh	Industrievertretung für Automation und Sicherheit	automation \& safety
Junghansstr. 16	Dr.-Riese-Str. 1	
72160 Horb am Neckar	07937 Langenwolschendorf	
Telefon +49 (0) 745155010	Telefon +49 (0) 366287250	
Telefax +49 (0) 7451550170	Telefax +49 (0) 3662872517	
info@riese-electronic.de	info-lawo@automation-sicherheit.	
www.automation-safety.com	www.automation-safety.com	

EUROPE

Austria	Belgium	Belgium
Distributor	Representative	Distributor
Reliste Steuerungstechnik GesmbH	Koning \& Hartmann B.V.	Rotero Belgium BVBA
Vertriebsleitung	Div. Multitechnic	Wayenborgstraat 10
Enzersdorfer Str. 8-10	Woluwelaan 31	B-2800 Mechelen
A-2345 Brunn am Gebirge	B-1800 Vilvoorde	Phone +32 15451840
Phone +43 2236315250	Phone +32 22570240	Fax +32 15451841
Fax +4322363152560	Mobil +0478939026	info@rotero.be
office@reliste.at	Fax +32 22570249	www.rotero.be
www.reliste.at	michael.wauters@KoningenHartmann.be www.multitechnic.be	
Belgium	Finland	France
Distributor	Distributor	Representative
Laumans BVBA:	UTU Powel Oy, Components	DISIMPEX
Weertersteenweg 138/2	P.O.Box 33, Palopellonkatu 7	14 rue Joseph Graff
B-3680 Kinrooi	FIN-04251 Kerava	F-67810 Holzheim
Phone +32 89702096	Phone +35 892746411	Telefon +03 90207420
Fax +32 89702097	Fax +35 8927464141	Fax +03 88769083
sales@laumans.com	powel@utu.eu	info@disimpex.com
www.laumans.com	www.utupowel.fi	www.disimpex.com
Hungary	Italy	Netherlands
Representative	Representative	Distributor
Merker 2007 Zrt.	Tecnel System SpA	Laumans Techniek B.V.:
Kistályai út 14.	Via Brunico 15	Fahrenheitsstraat 12
H-3300 Eger	I-20126 Milano	NL-6003 DC Weert
Phone +36 36524200	Phone +39 022578803	Phone +314955 21067
Fax+36 36311510	Fax +39 0227001038	Fax +31495542457
ferenczm@tervker.hu	tecnel@tecnelsystem.it	sales@laumans.com
www.tervker.hu	www.tecnelsystem.it	www.laumans.com
Netherlands	Netherlands	Spain
Distributor	Distributor	Representative
Rotero B.V.	Isotron Systems B.V.	Soltekin S.L.
Postbus 126	Afrikalaan 21-23	Apdo. Correos No 62
NL-3440 AC Woerden	NL-5232 BD 's-Hertogenbosch	C/EI Fou No 84
Phone +31 348495150	Phone +31736391639	E-08440 Cardedeu
Fax +31 348495171	Fax +31736391699	Phone +34 (9) 38711945
info@rotero.com	info@isotron.nl	Fax +34 (9) 38462332
www.rotero.com	www.isotron.nl	central@soltekin.com www.soltekin.com
Switzerland	Switzerland	
Representative	Distributor	
Bachofen AG	Surber AG	
Industrielle Automation	Industriestr. 7	
Abteilung Schaltechnik	CH-4653 Obergösgen	
Ackerstrassen 42	Phone +4162 2950333	
CH-8610 Uster	Fax +41622950302	
Phone +41 (0) 449441111	info@surberag.ch	
Fax +41 (0) 449441004	www.surberag.ch	
sg@bachofen.ch		

www.bachofen.ch

WORLDWIDE

China	China	South Africa
Distributor	Distributor	Representative
Shanghai Controlway Technology Co., Ltd	Techimport Int'I LLC	Curmec CC
Room 305 No.1870, DongFangRoad	5F, No. 196 Xinjinqiao Road	P.O.Box 1818
Shanghai 200125, China	Shanghai 201206, China	Bedfordview 2008/Gauteng
Telefon +861088470973	Telefon +86 2150311727	ZA-Germiston 1401
Telefax +861088447190	Telefax +86 2158990053	Phone +27 118730536
assist@controlway.cn	elainelee@techimport.com	Fax +27 118739743
www.controlway.com	www.techimport.com	info@curmec.co.za
		www.curmec.co.za
South Korea	Taiwan	USA/Canada/Mexico
Representative	Representative	Representative
TELKO Korea Co. Ltd.	Daybreak International	Norstat Inc.
Seoul, Korea	(Taiwan) Corporation	ROCKAWAY, NJ 07866, USA
Phone +82 232737800	TAIPEI, ROC TAIWAN	Phone +1 (973) 5862500
Fax +82 232737802	Phone +88 6288661231	Fax +1 (973) 5861590
telko@unitel.co.kr	Fax +886288661239	info@norstat.com
www.telko.co.kr	day111@ms23.hinet.net	www.norstat.com
	www.daybreak.com.tw	
		over by:

[^0]: We are producing all devices according to the ROHS guidlines. Please find the exact information here:

[^1]: Relevant information:
 partly also available with hard gold-plated contacts. Please ask for price and delivery time by hard gold-plated contacts. All operating instructions can be found under www.automation-safety.com

