Selection diagram

FS 1896D024-F1GM2K40

Contact blocks		
	Solenoid operated	Actuator operated
$\mathbf{1 8}$	$1 \mathrm{NO}+1 \mathrm{NC}$	
20	$1 \mathrm{NO}+2 \mathrm{NC}$	
21	$3 N C$	
28	$1 \mathrm{NO}+1 \mathrm{NC}$	1 NC
29	$2 N C$	1 NC
30	1 NC	2 NC

Working principle
96D
locked actuator with de-energized
96E solenoid

96E locked actuator with energized solenoid
98D locked actuator with energized solenoid with auxiliary lock release device

Preinstalled cable gland or connectors no cable gland or connector (standard) with assembled cable gland suitable for $\varnothing 6$ to
with M12 metal connector assembled and

For the complete list of all combinations, please contact our technica

	without actuator (standard)
F	with straight actuator
F1	with right-angled actuator
F2	with jointed actuator
F3	with jointed actuator adjustable in two directions
F7	with jointed actuator adjustable in one direction
F8	with universal actuator

K40 wired, 8 poles office.

Threaded conduit entry
PG 13,5 (standard)
M2
M20x1,5

Contacts type

	silver contacts (standard)
\mathbf{G}	silver contacts gold plated $1 \mu \mathrm{~m}$

Actuators

......................

G silver contacts gold plated $1 \mu \mathrm{~m}$

Actuators

Solenoid supply voltage
02424 VAC/DC (-10\% ... +25\%).
120 120 VAC (-15\% ... +20\%)
230 230 VAC (-15\% ... +10\%)

Main data

- Polymer housing, three conduit entries
- Protection degree IP66
- 6 contact blocks available
- 6 stainless steel actuators available
- Three supply voltages available
- Versions with auxiliary release device or auxiliary lock release device
- Versions with energized or de-energized solenoid

Markings and quality marks:

Technical data

Housing

Housing made of glass-reinforced polymer, self-extinguishing, shock-proof thermoplastic resin and with double insulation
Three conduit entries
Protection degree: IP66 (electrical contacts)

General data

Ambient temperature:
Max operating frequency:
Mechanical endurance:
Max actuating speed:
Min. actuating speed:
Max holding force:
Max backlash of the actuator:
Actuator extraction force:
(1) One operation cycle means two movements, one to close and
to close and one to open contacts, as foreseen by IEC 947-5-1

Cross section of the conductors (flexible copper wire)
Contact blocks 20, 21, 28, 29, 30: min. $1 \times 0,34 \mathrm{~mm}^{2} \quad(1 \times$ AWG 22)
Contact blocks 18:
max. $2 \times 1,5 \mathrm{~mm}^{2} \quad(2 \times$ AWG 16)
$\min . \quad 1 \times 0,5 \mathrm{~mm}^{2} \quad(1 \times$ AWG 20$)$
max. $2 \times 2,5 \mathrm{~mm}^{2} \quad(2 \times$ AWG 14)

In conformity with standards:

IEC 947-5-1, IEC 337-1, EN 60947-5-1, CEI EN 60947-5-1, CEI 17-45, IEC 204-1,
EN 60204-1, CEI 44-5, EN 1088, EN ISO 12100-1, EN ISO 12100-2, IEC 529,
EN 60529, CEI 70-1, EN 61000-6-2, EN 61000-6-3, EN 50081-1, EN 50082-2, CENELEC EN 50013, BG-GS-ET-15.

Approvals:

IEC 947-5-1, UL 508.

In conformity with requirements requested by:

Low Voltage Directive 73/23/EEC and subsequent modifications and completions. Machinery Directive 98/37/EEC.
Electromagnetic Compatibility 89/336/EEC and subsequent modifications and completions.
Positive contact opening in conformity with standards:
IEC 947-5-1, EN 60947-5-1, CEI EN 60947-5-1, VDE 0660-206.

Solenoid

Solenoid duty cycle:
Inrush solenoid power:
Steady-state solenoid power:
Average solenoid power:
Solenoid protection 24 V :
Solenoid protection 120 V :
Solenoid protection 230 V :

100\% ED
56 VA ($0,1 \mathrm{~s} / 0,05 \mathrm{~s}$ for 230 V)
4 VA
20 VA
fuse 1 A type aM
fuse 630 mA , delayed type
fuse 315 mA , delayed type
§ For the correct installation of all articles, please see "Utilization requirements" chapter, from page $6 / 1$ to page 6/4.

Electrical data			Utilization categories			
	Thermal current (Ith): Rated insulation voltage (Ui):	10 A 500 VAC 600 VDC 400 VAC for contact blocks 20, 21, 28, 29, 30 fuse 10 A 500 V type aM 3	Alternate current: AC15 ($50 . . .60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
	Protection against short circuits:		Direct	24	125	250
	Pollution degree:		le (A)	6	1,1	0,4

Thermal current (Ith): 2
Rated insulation voltage (Ui):
Protection against short circuits:
Pollution degree:

2 A

30 VAC 36 VDC
fuse 2 A 500 V type gG 3

Alternate current: AC15 (50... 60 Hz)
$\mathrm{Ue}(\mathrm{V}) \quad 24$
le (A) 2
Direct current: DC13
$\mathrm{Ue}(\mathrm{V}) \quad 24$
le (A) 2

Description

These switches are used on machines where the hazardous conditions remain for a while, even after the machine has been switched off, for example because of mechanical inertia of pulleys, saw disks, parts under pressure or with high temperatures. They can also be used when it is necessary to control machine guards, allowing the opening of protections only under specific conditions.

Rotating head and release device

The head can be quickly rotated on each of the 4 sides of the switch by unfastening the two fixing screws. The mechanical lock release device can be rotated in 90° steps as well. This enables the switch to assume 32 different configurations.

Actuator holding force

The strong interlocking system guarantees a maximum actuator holding force of 1000 N .

Actuator regulation zone

This switch has a wide backlash of the actuator into the head $(4,5 \mathrm{~mm})$ to avoid that door gaskets keep in traction the actuator on the solenoid. With closed door, check that the actuator doesn't knock straight against the head of the switch; it must be in the adjustment zone ($0,5 \ldots 5$ mm)

Limits of utilization

Do not use where dust and dirt may penetrate in any way into the head and deposit there, in particular where metal dust, concrete or chemicals are spread.
Do not use where explosive or inflammable gas is present.

Installation of two or more switches connected to the same power supply

24 VAC/DC version only

- This operation is intended to reduce the results of the solenoid inrush current on the power supply and has to be executed only if necessary and with special care.
- Switch off the power supply.
- Open the switch cover.
- Remove the black plastic protection that covers the solenoid by unscrewing the two screws which fix the protection to the body of the switch.
- Move the dip-switch with a tool so that each switch has a different combination (see figure beside). If more than four switches are installed, repeat the combinations for any next set of four switches.
- Reposition the black plastic protection and tighten the two screws with a torque of $0,8 \mathrm{Nm}$.

Data type approved by IMQ and EZU

Rated insulation voltage (Ui): 500 VAC
400 VAC for contact blocks 20, 21, 28, 29, 30
Thermal current (Ith): 10 A
Protection against short circuits: fuse 10 A 500 V type aM
Protection degree: IP66
MV terminals (screw clamps)
Pollution degree 3
Utilization category: AC15
Operation voltage (Ue): 400 VAC $(50 \mathrm{~Hz})$
Operation current (le): 3 A

Data type approved by UL

Utilization categories Q300 (69 VA, 125-250 VDC)
A600 (720 VA, 120-600 VAC)
Data of the housing type 1, 4 X (indoor use only), 12, 13
In conformity with standard: UL 508
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor and wire size No. 12-14 AWG. Terminal tightening torque of 7,1 Lb-In.

[^0]
Description

The working principle of these safety switches allows three different working states:
state A: with the actuator inserted and blocked by the solenoid
state B : with the actuator inserted but not blocked
state C: with the actuator extracted
All or some of these states may be controlled through the positive opening contacts of the internal contact block. In detail, contact blocks that have electric contacts marked with the symbol of the solenoid (\neg) are switched in the transition between the state A and state B, while the electric contacts marked with the symbol of the actuator (σ) are switched between state B and state C:

It is also possible to choose between two working principles for the actuator locking:

- Working principle D: Actuator blocked with de-energized solenoid. Actuator release is obtained by power supply to the solenoid (see example of working cycle steps).
- Working principle E: Actuator blocked with energized solenoid. The unlock of the actuator is obtained by power-off to the solenoid. It is advisable to use this version under special conditions because a blackout will allow the immediate opening of the protection.

This series of products includes many technical solutions that result flexible on installation and easy working:

- Six different types of stainless steel actuator, suitable to be fixed in several positions and with insertion radius arc equal to or over 80 mm .
- Swinging head, in 90° steps, with two actuator entries for easy installation of the switch.
- To extract the inserted but not blocked actuator, a 30 N force is necessary, that avoids the guard opening because of vibrations or impacts.
- When actuator is locked, it can still move a little ($4,5 \mathrm{~mm}$), to avoid that door gaskets keep in traction the actuator on the solenoid.
- Housing with three conduit entries for an easier installation or connection in series.
- Electronic control of the power supply, which allow a wide tolerance on supply voltage. This technical solution resolves the problems that may derive from not stable power supply (machine distance from main transformers, tension variation between night/day hours), allowing also a low solenoid power consumption and consequently enlarging the working temperatures range of the switch.
- No-loosing screws contact blocks, fingers protection, twin bridge contacts and double interruption for a higher contact reliability.

Versions with D working principle are supplied with a sealable auxiliary release device used by technicians during the installation or to access to inside the machine in case of black-out. The release device may be of sealable type (head 96, see figure A) or lock type (head 98, see figure B). In this last case the release device may also be used to allow authorized operators in possession of key to open small protections.

Attention! These switches alone are not suitable for applications where operators with key may physically enter the dangerous area, because an eventual closing of the door behind them could restart the machine working. In this case must be used the entry locking device VF KB1 that is visible on page 4/29.

Example of working cycle steps with FS 2896D024-F1 (switch with working principle D)

Contacts position in switch states

Operation state		Working principle D locked actuator with de-energized solenoid			Working principle E locked actuator with energized solenoid		
		$\begin{gathered} \text { state } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { state } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { state } \\ \text { C } \end{gathered}$	$\begin{gathered} \text { state } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { state } \\ \text { B } \end{gathered}$	state C
Actuator		Inserted and locked	Inserted and unlocked	Extracted	Inserted and locked	Inserted and unlocked	Extracted
Solenoid		De-energized	Energized	-	Energized	De-energized	-
Contact blocks							
FS 18••*••• 1NC+1NO controlled by the solenoid	$\begin{aligned} & =\square \\ & =\triangle \end{aligned}$	$\begin{aligned} & 21 \longrightarrow \text { と } 22 \\ & 13 \longrightarrow 14 \end{aligned}$	$$	$\begin{array}{lll} 21 \\ 13 & \square & 22 \\ \square \end{array}$	$\begin{aligned} & 21 \longrightarrow \text { と } 22 \\ & 13 \longrightarrow \quad 14 \end{aligned}$	$\begin{array}{ll} 21 \sim & 22 \\ 13 & \square \end{array}$	$\begin{array}{ll} 21 & 22 \\ 13 & \square \end{array}$
FS 20•0.0.• 2NC+1NO controlled by the solenoid	$\begin{aligned} & -\triangle \\ & =\triangle \\ & =\triangle \end{aligned}$	$\begin{aligned} & 11 \longleftarrow \begin{array}{l} \text { Ł } \\ 212 \\ 2 \\ \hline \end{array} 24 \\ & 33 \end{aligned}$	$\begin{aligned} & 11 \longrightarrow \\ & 21 \sim \\ & 33 \longrightarrow \end{aligned}$	$\begin{aligned} & 11 \longrightarrow \quad 12 \\ & 21 \sim \\ & 33 \sim \end{aligned}$	$$	$\begin{aligned} & 11 \sim \\ & 21 \sim \\ & 33 \longrightarrow \end{aligned}$	$\begin{aligned} & 11 \longrightarrow \quad 12 \\ & 21 \longrightarrow \\ & 33 \longrightarrow \begin{array}{l} \square \end{array} \\ & 34 \end{aligned}$
FS 21•000•• 3NC controlled by the solenoid	$\begin{aligned} & -\triangle \\ & =-\Delta \\ & =-\Delta \end{aligned}$	$\begin{aligned} & 12 \text { Ł } 12 \\ & 21 \text { Ł } 22 \\ & 31 \text { Ł } 32 \end{aligned}$	$\begin{aligned} & 11 \longrightarrow \\ & 21 \longrightarrow \\ & \longrightarrow \\ & 31 \\ & \square \end{aligned}$	$\begin{aligned} & 11 \sim \\ & 21 \sim \\ & 31 \sim \\ & \square \end{aligned}$	$$	$\begin{aligned} & 11 \longrightarrow \quad 12 \\ & 21 \longrightarrow \quad 22 \\ & 31 \longrightarrow \quad 32 \end{aligned}$	$\begin{aligned} & 11 \longrightarrow \quad 12 \\ & 21 \longrightarrow \quad 22 \\ & 31 \longrightarrow \quad 32 \end{aligned}$
FS 28.0.0.0 1NO +1 NC controlled by the solenoid 1NC controlled by the actuator			$\begin{array}{lll} 11 \sim & 12 \\ 21 & \square & 22 \\ 33 & \square & 34 \end{array}$	$\begin{aligned} & 11 \sim \\ & 21 \sim \\ & 33 \sim \end{aligned}$	$$	$\begin{array}{lll} 11 \sim & 12 \\ 21 & \boxed{\llcorner } & 22 \\ 33 & \boxed{L} \end{array}$	$\begin{array}{lll} 11 \longrightarrow & 12 \\ 21 \sim & \square \\ 33 & \square \end{array}$
FS 29•0.0.0 2NC controlled by the solenoid 1NC controlled by the actuator	$\begin{aligned} & -\triangle \\ & -\triangle \\ & \curvearrowleft \sqrt{\square} \end{aligned}$		$\begin{array}{lll} 11 \longrightarrow & 12 \\ 21 \sim & \square 2 \\ 31 & \square & 32 \end{array}$	$\begin{aligned} & 11 \longrightarrow \\ & 21 \longrightarrow \\ & \longrightarrow \\ & 31 \\ & \longrightarrow \end{aligned}$		$\begin{array}{lll} 11 \longrightarrow & 12 \\ 21 \sim & \square \\ 31 & \square \end{array}$	$\begin{aligned} & 11 \longrightarrow \quad 12 \\ & 21 \sim \\ & 31 \sim \\ & \square \end{aligned}$
FS 30•0.0.• 1NC controlled by the solenoid 2NC controlled by the actuator	$\begin{aligned} & \text { - } \\ & \text { ofr } \\ & \text { of } \end{aligned}$		$\begin{array}{lll} 11 & \square & 12 \\ 21 & \square & 22 \\ 31 & \boxed{\varkappa} & 32 \end{array}$	$\begin{aligned} & 11 \longrightarrow \\ & \square \\ & 21 \sim \\ & 31 \sim \end{aligned}$	$$	$\begin{array}{lll} 11 & \square & 12 \\ 21 & \boxed{\longleftarrow} & 22 \\ 31 & \boxed{~} & 32 \end{array}$	$\begin{aligned} & 11 \longrightarrow \\ & 21 \sim \\ & \longrightarrow \\ & 31 \\ & \square \end{aligned}$

Dimensional drawings

NC opening	Example diagram
	$\begin{aligned} & \text { Closed contact } \\ & \text { Open contact } \end{aligned}$

IMPORTANT:

NC contact has to be considered with inserted actuator and lock by the lock. In safety applications it is necessary to activate the switch at least up to the positive opening point indicated in the diagrams with the symbol Θ. Operate the switch at least with the positive opening force, indicated between brackets, below each article, next the value of minimum force.

Accessories

Article	Description	Pack
VF KLA371	Set of 2 locking keys	1 pc
Extra		

Extra copy of the locking keys, only to be purchased if further keys are needed (standard supply 2 units).
All switches keys have the same code. Other codes on request.

Stainless steel actuators

IMPORTANT: These actuators must be used with FD, FP, FL, FC or FS series only (e.g. FS 1896D024)

The actuator can flex in four directions for applications where the door alignment is not precise

Actuator adjustable in one direction for doors with reduced dimensions.

Article	Description	Pack
VF KEYF1	Right-angled actuator	10 pcs

Article	Description	Pack
VF KEYF3	Jointed actuator adjustable in two directions	10 pcs

Actuator adjustable in two directions for doors with reduced dimensions.

Article	Description	Pack
VF KEYF8	Universal actuator	1 pc

Actuator adjustable in two directions for doors with reduced dimensions. The actuator has two couples of fixing holes and it is possible to rotate the actuator-working plan (see picture).

Items with code on the green
Accessories
See page $5 / 1$
background are available in stock

Accessories for sealing

Pliers, steel wire and lead seals used to seal the auxiliary release device (head 96D).

Article	Description	Pack
VF FSPB-200	Set of 200 lead seals	1 pc
VF FSPB-10	Set of 10 lead seals	1 pc
Article	Description	Pack
VF FSFI-400	400 m steel wire roll	1 pc
VF FSFI-10	10 m steel wire roll	1 pc
Article	Description	Pack
VF FSPZ	Plier without logo	1 pc

[^0]: Please contact our technical service for the list of type approved products.

